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ABSTRACT
Natural Language Processing (NLP) and Information Retrieval (IR)
in the judicial domain is an essential task. With the advent of avail-
ability domain-specific data in electronic form and aid of different
Artificial intelligence (AI) technologies, automated language pro-
cessing becomes more comfortable, and hence it becomes feasible
for researchers and developers to provide various automated tools
to the legal community to reduce human burden. The Competition
on Legal Information Extraction/Entailment (COLIEE-2019) run in as-
sociation with the International Conference on Artificial Intelligence
and Law (ICAIL)-2019 has come up with few challenging tasks. The
shared defined four sub-tasks (i.e. Task1, Task2, Task3 and Task4),
which will be able to provide few automated systems to the judicial
system. The paper presents our working note on the experiments
carried out as a part of our participation in all the sub-tasks de-
fined in this shared task. We make use of different Information
Retrieval(IR) and deep learning based approaches to tackle these
problems. We obtain encouraging results in all these four sub-tasks.
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1 INTRODUCTION
Language technology based automated system has a great impact
and demand in judicial domain. As for example, it will mitigate the
problem of manual checking of large amount of previous files to
find relevancy to a current case. This kind of system would be very
effective to lawyers which will expedite the process of providing
verdict on a particular case. Previously, it took couple of months
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and/or even a year to get verdict of a particular case. It is observed
that there are many cases where practitioners rely on previous
court case files to extract information and try to find relevancy
with him/her current solving case. In normal practise they do it
process manually. However, computerised processing of such ju-
dicial domain texts is taxing as the files are very large in size and
remain unstructured. This stipulates lot of research in this domain.
The Competition on Legal Information Extraction and Entailment
(COLIEE-2019) an associated event of (ICAIL)-2019 has defined four
problems related to IR in this domain. Task 1 and Task 2 are in-
volved the case law competition, Task 1 and Task 2 are associated
with statute law competition. The data for these two types of tasks
are extracted accordingly. We participate in all the four tasks (i.e.
Tasks 1, Tasks 2, Tasks 3 and Tasks 4) defined in this competition.
All of these four tasks are vary emerging and are of utmost priority.

Task 1: This task is basically legal case retrieval task. Overall the
task is: after reading an new case Q, the system has to extract sup-
porting cases S1, S2, S3, ....Sn from the provided case law dataset.
This will support the decision for Q.
Task 2: This legal case entailment task, which involves the detec-
tion of a paragraph from the existing cases that entails the decision
of a new case.
Task 3: The task 3 is essentially a legal Question-Answering task.
The task could be defined as: reading a legal bar examination ques-
tion Q and extracting a subset of Japanese Civil Code Articles S1,
S2,..., Sn from the entire Civil Code which are those appropriate for
answering the question such that i.e.
Entails(S1, S2, ..., Sn , Q) or Entails(S1, S2, ..., Sn , not Q).
Overall, the task is given a question Q and the entire Civil Code
Articles, the system has to retrieve the set of articles "S1, S2, ..., Sn"
as the answer of this track.
Task 4: This task involves legal question answering task which
associates the identification of an entailment relationship such that
Entails(S1, S2, ..., Sn , Q) or Entails(S1, S2, ..., Sn , not Q).
Given a question Q, the participating systems have to retrieve rele-
vant articles S1, S2, ..., Sn in the first phase, and in the second phase,
the systems have to determine if the relevant articles entail "Q" or
"not Q". The answer of this track would be binary: i.e. "YES"("Q") or
"NO"("not Q").
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We propose various approaches to combat these problems. We
discuss all our approaches in the section 4.

2 OUR APPROACHES
The propose approaches for the all four tasks are based on Doc2Vec,
BM25, tf-idf, Bidirectional Encoder Representations from Transformers
(BERT) [2]. The following subsections will discuss all the approaches
one by one.

2.1 Doc2Vec
Doc2Vec [3] is an unsupervised algorithm that learns fixed-length
feature representations from variable-length pieces of texts, such as
sentences, paragraphs, and even a whole documents. This algorithm
represents each document by a dense vector which is trained to
predict words in the document. More precisely, we concatenate on
the paragraph vector with several word vectors from a paragraph
and predict the following word in the given context. Both word
vectors and paragraph vectors are trained by the stochastic gradi-
ent descent and back-propagation [6]. While paragraph vectors are
unique among paragraphs, the word vectors are shared. At predic-
tion time, the paragraph vectors are inferred by fixing the word
vectors and training the new paragraph vector until convergence.

2.2 BM25
BM25 [5] is one of the most successful text-retrieval algorithm.
BM25 is a bag-of-words retrieval function that ranks a set of doc-
uments based on the query terms appearing in each document,
regardless of the inter-relationship between the query terms within
a document. Given a query Q, containing keywords q1,q2,....qn the
BM25 score of a document D is:

𝑆𝑐𝑜𝑟𝑒 (𝐷,𝑄) =
𝑛∑
𝑖=1

𝐼𝐷𝐹 (𝑞𝑖 )
𝑓 (𝑞𝑖 , 𝐷) .(𝑘1 + 1)

𝑓 (𝑞𝑖 , 𝐷) + 𝑘𝑖 .(1 − 𝑏 + 𝑏. |𝐷 |
𝑎𝑣𝑔𝑑𝑙

)
(1)

where f(𝑞𝑖 , D) is 𝑞𝑖 ’s term frequency in the document D, |D| is
the length of the document D in words, and avgdl is the average
document length in the text collection from which documents are
drawn.

2.3 Term Frequency * Inverse Document
Frequency

Term Frequency and Inverse Document Frequency (tf*idf) is a numer-
ical statistic that is intended to reflect how important a word is to a
document in a collection of corpus. It is often used as a weighting
factor in searches of information retrieval, text mining, and user
modeling. The tf*idf value increases proportionally to the number
of times a word appears in the document and is offset by the num-
ber of documents in the corpus that contain the word, which helps
to adjust for the fact that some words appear more frequently in
general. The formula that is used to compute the tf*idf for a term t
of a document d in a document set is:

𝑡 𝑓 − 𝑖𝑑 𝑓 (𝑡, 𝑑) = 𝑡 𝑓 (𝑡, 𝑑) ∗ 𝑖𝑑 𝑓 (𝑡) (2)

We implement this using python library [4].

2.4 Bidirectional Encoder Representations
from Transformers (BERT)

We make use of a novel language representation model called Bidi-
rectional Encoder Representations from Transformers (BERT). The
model is the latest language representation model used in various
tasks of NLP. The task 4 defined in this shared task is a classifi-
cation task. We treat the task as a sentence classification task by
considering ’t1’ and ’t2’ as two sentences respectively. Using BERT
we obtain a vector corresponding to the ’[CLS]’ token at the last
layer. This vector is subsequently used for classification. So per ’t1’
and ’t2’ we get one vector to be subsequently used in a downstream
model (e.g a feed-forward neural net layer) for further classification.
We tried with adding 1 or 2 Dense layers but actually the accuracy
obtained was not good to report. The vector obtained was of 768
dimensions and the training set contains 724 examples. Each ex-
ample contains more dimensions of a vector than the number of
examples combined. So the data is prone to be over-fitted. So we
resort to use a popular machine learning model known as eXtreme
Gradient Boosting (XGBoost) [1] for classification. XGBoost gained
much popularity recently as a winning solution in several machine
learning competitions. It is actually a library which provides gra-
dient boosting framework in several languages. We treat each of
the dimension of the vector corresponding to ’[CLS]’ as a separate
feature. So we got 724 training examples each with 768 features.
We use a matrix representing this data with dimension [724,768].
This is given to the XGBoost model for classification.

3 DATA
The whole competition task is divided into two categories viz 1.
Case Law Competition (Task 1 and task 2) 2. Statute Law Competition
(Task 3 and Task 4). The task organizer’s released the data for all
these four tasks defined. The data is obtained from an existing
collection of predominantly Federal Court of Canada case law. In
task-1 the training data consists of 285 case queries and each query
has 200 candidate notice cases. So each query has 9.87 notice cases
on average. The training data of task-2 comprises of 181 queries
and each query has an average of 48.59 candidate paragraphs for
recognizing entailment relation. In the training data of this task
on an average 1.32 paragraphs have an entailment relation with a
query. For the task 3 and 4 data are borrowed from Japanese civil
law articles (translated to English) and the size of the data for these
two tasks are same having 1044 articles.

4 SYSTEM DESCRIPTION
There were four sub-tasks in this competition. We attempt all of
those. In the following subsections we discussed about the experi-
mental procedures, models etc. Basically, the pre-processingmodule
for task 1 and task 2 is the same, which is described in the following
paragraph.

Pre-processing: The pre-processing module comprises of two
stages. In the first stage, i.e. for the first model (named as IITPd2v),
we perform minimal amount of pre-processing. All the candidate
cases and the base cases are extracted and the paragraph numbers
are removed. In the second stage i.e. for second model (named as
iitpBM25), we remove all the words having length lower than 3
character and all the numerical values from every documents. We
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also remove all the stop-words using NLTK tool. Then we lemma-
tize the words using NLTK WordNetLemmatizer 1.

4.1 Task1
The goal of this task is to explore and evaluate case law retrieval
technologies that are both effective and reliable. The task investi-
gates the performance of systems that search a set of legal cases
that support a previously unseen case description. The input of this
system is a query and return noticed cases in the given collection
as output. We say a case is ’noticed’ with respect to a query iff the
case supports the decision of the query case. In this task, the query
case does not include a decision, because our goal is to determine
how accurately a machine can capture decision-supporting cases
for a new case (with no decision).
The training data consists of 285 numbers case queries for this task,
and each query has 200 numbers candidate noticed cases. In the
training data of this task, each case query has an average of 9.87
noticed cases. We propose three models for this task namely IITP
Doc2Vec (IITPd2v), iitpBM25 and iitpDocBM

4.1.1 Models. We have three models to tackle this problem, we
will discuss all these in detail in the following paragraphs.
iitpd2v: In this model, we train the data obtained from stage-1 of
pre-processingmodule. For training purpose wemake use of gensim
Doc2Vec with vector size = 150, window = 10, and with 50 epochs.
For every query, we compute the Doc2Vec similarity between the
base case and all of its candidates. As the task contains variable
number of noticed cases, top 10 candidates whose similarity was
greater than 90% of average score of top two are returned. Total
245 documents are returned for 61 base cases. This model yields
the precision, recall, and F-measure as 0.4653, 0.3455, and 0.3965
respectively.
iitpBM25: From this model, we collect the data yielded by the
stage-2 of pre-processing module. We compute BM25 score of all
the candidate cases for every base case using gensim library. Then
the top 10 candidates whose similarity is greater than 90% of average
score of top two are returned. Thus, the total of 203 documents are
returned. This model produces the precision, recall, and F-measure
as 0.6256, 0.3848, and 0.4765 respectively.
iitpDocBM: In this model we combine the scores obtained from the
previous two models i.e. from the iitpd2v and from the iitpBM25.
Themakemultiplication of those two scores, so that only documents
with high scores on both Doc2Vec and BM25 are ranked. Top 10
candidates whose similarity was greater than 80% of average score
of top two are returned. In this way total of 201 documents are
returned. We compute the precision, recall, and F-measure and get
the scores as 0.6368, 0.3879, and 0.4821 respectively for this model.

4.2 Task2
In this task, the goal is to predict the decision of a new case by
entailment from previous relevant cases. As a simpler version of
predicting a decision, a decision of a new case and a noticed case
will be given as a query. Then a case law textual entailment system

1https://pythonprogramming.net/lemmatizing-nltk-tutorial/

must identify which paragraph in the noticed case entails the deci-
sion, by comparing the extracting and the meanings of the query
and paragraph.

4.2.1 Model. We propose three models for this task. The name
of the models are viz. i. iitp2D2v ii. iitpBM25 and iii. iitp2DocBM
iitp2D2v: For iitp2D2v module, we take the data from stage-1 of
pre-processing module which we train using gensim Doc2Vec. The
specifications for the training is as follows: vector size = 100, win-
dow = 5, and epochs = 50. For every query, Doc2Vec similarity
between the entailed fragment and all of its candidates are com-
puted and the candidate with highest score are returned. This yields
the Precision, Recall, and F-measure of 0.0455, 0.0444, and 0.0449
respectively.
iitpBM25:For iitpBM25, we take the data from stage-2 of the pre-
processing module. For every entailed fragment BM25 score of all
the candidates are computed by employing gensim library. Then
candidate with highest score are returned. This system yields the
Precision, Recall, F-measure scores of 0.7045, 0.6889, and 0.6966
respectively. Please note that we got the highest Precision score
among all the participants in this task. We obtain the F-score which
is the second highest among unique teams.
iitp2DocBM: In iitp2DocBM module, the scores obtained from
iitp2D2v and iitpBM25 are multiplied, so that only candidates with
high scores on both the methods are ranked. Then the candidate
with the highest score is returned. We obtain the Precision, Recall,
and F-measure score as 0.6591, 0.6444, and 0.6517 respectively in
this task.

4.3 Task3
This task investigates the performance of the systems that search
a static set of civil law articles using previously unseen queries.
The goal of this task is to return relevant articles in a collection
to a query. We call an article as "Relevant" to a query iff the query
sentence can be answered as Yes/No, i.e. entailed from the mean-
ing of the article. If combining the meanings of more than one
article (e.g., "A", "B", and "C") can be answered a query sentence,
then all the articles ("A", "B", and "C") are considered as "Relevant".
If a query can be answered by an article "D", and it can also be
answered by another article "E" independently, we also consider
both of these articles "D" and "E" as "Relevant". This task requires
the retrieval of all the articles that are relevant to answering a query.

4.3.1 Model. We propose four models in this task namely iitpBM25,
iitpBM25-L, iitptfidf and iitptfidf-L. The following points will discuss
all the models in detail.
iitpBM25: In this module, for every query BM25 score of all the
articles are computed using gensim library. Then candidates having
the highest score are returned. The total 98 results are retrieved
among which 54 are correct. Total number of correct entries in the
corpus was 121. We obtain the Precision, Recall, and F2-measure of
0.5510, 0.4462, and 0.4639 respectively.
iitpBM25-L: This model is the modified version of the previous
one. We extract the top 100 documents in Descending Order of
their score for each query. 109 out of 121 articles in the corpus are
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retrieved correctly. iitptfidf: In this model, for every query tf-idf
score of all the articles are computed using sklearn TfIdfVectorizer
library2. The candidates having the highest scores are returned.
Total 98 articles are retrieved among which 49 are correct. Total
number of correct entries in the corpus was 121. So the precision,
recall, and F2-measure provided by this system are 0.50, 0.4049, and
0.4209 respectively.
iitptfidf-L: This model also the modified version of the previous
one. We retrieve top 100 documents for each query. The model
retrieves 108 articles out of which 121 articles correct.

4.4 Task4
Pre-processing: In the Task 4 the pre-processing procedure is as
follows. We extract the data from the given .xml files containing
tags named as ’pairs’, ’t1’, and ’t2’. Under a ’pair’ of ’t1’ and ’t2’, we
have to find their entailment relationship. We use the ’id’ attribute
under the ’pair’ tag as a key to store the corresponding article(t1)
and the document(t2). For the training of the model we make use of
the training data provided for Task 3 and tested the system using
the test data provided in the Task 4. We extract the task-4 data for
training in similar ways as of task-3 discussed above. Here along
with ’t1’ and ’t2’, we also got the ’label’ attribute under pair tag
which are used as training labels. We gather all ’t1’ś and ’t2’ś along
with their labels to form the training dataset. In Task 4 for training
purpose we got 12 files containing 724 training examples with 353
instances as ’Yes’ and 371 instances ’No’.

4.4.1 Model. Here only one model is offered. The description of
the model is as follows.
iitpbert: In this task we propose a model named as ’iitpbert’. We
make use of BERT-Base-Uncased (Bidirectional Encoder Represen-
tation from Transformer)[2] model to combat this problem. We
provide all the ’t1’s and ’t2’s as inputs to the BERT model. This
task is basically a sentence pair classification task. So we obtain the
final hidden state (i.e. output of Transformer) corresponding to the
first ’[CLS]’ token as the vector representation for the classification
tasks. We check that the combined length of t1 and t2 should be less
than 512 or not. BERT model can handle the maximum length of
512. We strip the tokens after index 512, if it exceeds 512. We obtain
a matrix of shape N*M where N is number of training examples and
M is the dimension of the output vector of BERT (here M = 768).
We try to add dense layers and other machine learning models like
SVM and XgBoost on top of that output vectors to train them end
to end. This yields an accuracy of around 55% when validated on
a held out train set. We choose to stay with the trained XgBoost
classifier and use it to predict labels for the task-4. We submit that
file with predicted file for evaluation. This approach produces an
accuracy of 59.18% on the test set for this task.

5 RESULTS AND DISCUSSIONS
The task organizer’s defined various measures to evaluate the par-
ticipating systems. The task 1 and task 2 rely on precision, recall and
F-measure. In task 3, in addition to precision, recall and F2-measure

2https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html

Table 1: Results obtained by proposed models in Task-1

Models Precision Recall F-measure
iitpd2v 0.4653 0.3455 0.3965
iitpBM25 0.6256 0.3848 0.4765
iitpDocBM 0.6368 0.3879 0.4821

Table 2: Results obtained by proposed models in Task-2

Models Precision Recall F-measure
iitpd2v 0.0455 0.0444 0.0449
iitpBM25 0.7045 0.6889 0.6966
iitpDocBM 0.6591 0.6444 0.6517

Table 3: Results obtained by four proposedmodels in Task-3

Models Precision Recall F2-measure MAP
iitpBM25 0.4898 0.3967 0.4142 X
iitpBM25-L X X X 0.5409
iitptfidf 0.4388 0.3554 0.3694 X
iitptfidf-L X X X 0.5056

they also encourage the participant to take Mean Average precision
(MAP) into account. Whereas, in task 4 only accuracy is provided
as the evaluation metric. The results for the task1, and task-2 in
three methods are shown in the Table 1 and Table 2 respectively.
The results for the task-3 using four models are shown in the Table
3

Please note that here we have calculated Mean Average Precision
(MAP) by taking top 100 ranked documents into account. The MAP
scores are shown in iitpBM25-L and iitptfidf-L methods in the 5th
column of the Table 3. In task 4 participants are encouraged to
compute the accuracy to evaluate their submitted systems. So in
this task we compute the accuracy on from our Yes/No prediction.
We obtain the accuracy of 59.18% for the task with our proposed
model.

6 CONCLUSION AND FUTUREWORK
The paper presents our experiment’s report performed as a part of
our participation in all the four sub-tasks defined in the shared task
entitled COLIEE-2019 organized in ICAIL 2019. We propose various
text retrieval methods (Doc2Vec, BM25, and tf-idf ) for sub-task 1,
sub-task 2, and sub-task 3. BERT model is employed for tackling the
sub-task 4. We obtain encouraging results in all the four sub-tasks
and our ranks in all the four task are in a quite modest position
among all the participants in the leaderboard. Our future line of
research could be something as follows:

• Using some good pre-trained vector embeddingwith sent2vec
could produce better result, so we would link to foster this
in future.

• We would like to use BERT-large model (another version of
BERT) to explore how it is performing.

• We would like to do retrospective analysis of the best three
models in this competition to get some insights and for better
improvement further.
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